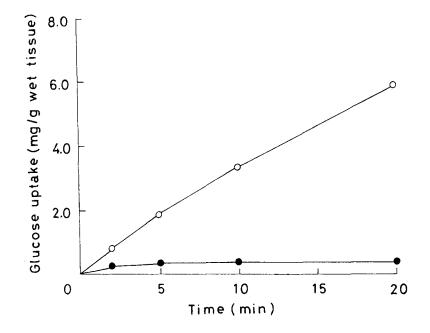
Uptake of D-glucose anomers by rat retina

J. OKUDA, I. MIWA, M. SATO¹ and T. MURATA^{1, 2}

Department of Clinical Biochemistry, Faculty of Pharmacy, Meijō University, Tempaku-ku, Nagoya 468 (Japan), and Department of Biopharmacy, Shizuoka College of Pharmacy, Oshika, Shizuoka 422 (Japan), 15 June 1976

Summary. Uptake of p-glucose anomers by isolated rat retina was studied. After 3 min incubation at 37 °C in the presence of α or β anomer (750 μ g/ml), a significantly greater uptake (1.32 mg/g wet tissue) of β -anomer was observed compared with that of α -D-glucose (1.11 mg/g wet tissue). This result and other data suggest that the carrier for Dglucose transport in the retina prefers the β -anomer stereospecifically.

The retina is a kind of neuron-rich tissue characterized by extremely rapid metabolism of D-glucose as well as brain cortex 3-5.


Recently we showed that the a anomer of D-glucose is more effective than the β anomer in triggering insulin secretion from isolated rat pancreatic islets⁶, and the β anomer of D-glucose is more easily transported into the islets than the α anomer 7.

From the points of physiological function of p-glucose anomers, it is interesting to study whether or not anomeric stereospecificity is present in the p-glucose uptake by the retina of rat.

Materials and methods. The two anomers of p-glucose were prepared by applying our method 7 for preparation of α - and β -D-glucose-1-3H. Each anomeric purity of the two anomers was determined to be more than 98% by our method using β -D-glucose oxidase [EC 1.1.3.4] (Nagase & Co., Osaka), hog kidney mutarotase [EC 5.1.3.3], and a Beckman oxygen electrode (model 777)8,9. Total amount of D-glucose in the reaction mixture before and after incubation was determined by a reagent kit of Boehringer (β-D-glucose oxidase-peroxidase-ABTS system) 10. The mutarotase activity of the retina was assayed by our method using β -D-glucose oxidase and an oxygen electrode 11. The eyes were removed from male Wistar strain rats weighing 150-200 g under anesthesia with ether and then hemisected just behind the corneoscleral junction. The lens and vitreous body were carefully discharged and the retina was gently peeled off with a blunt spatula from the sclera. All incubations were performed at 37°C in gassed (95% O₂ and 5% CO₂)

Krebs-Ringer bicarbonate solution. After a preliminary incubation period of 5 min, batches of 2 retinas (about 20 mg) were incubated for 3 and 5 min in 300 µl of the media with either the pure α or β anomer, or with the mixture of both anomers at the equilibrated ratio $(\alpha:\beta)$, 36:64) of D-glucose. These anomers were rapidly dissolved in the gassed Krebs-Ringer bicarbonate solution, which had been warmed to 37°C, by vigorous shaking just before use. The final concentration of p-glucose was 750 µg/ml. The major portion of each anomer in the incubation media just before the incubation was more than 98%, and during the 5 min incubation, the α and β anomers were converted to the other anomers by 42.4% and

- ¹ Department of Biopharmacy, Shizuoka College of Pharmacy, Oshika, Shizuoka 422, Japan.
- ² Acknowledgment. The authors are grateful to Mr S. Suzuki for his technical assistance.
- ⁸ F. Dickens and F. Simer, Biochem. J. 23, 936 (1929).
- ⁴ C. N. GRAYMORE, in Biochemistry of the Eye (Ed. C. N. GRAYMORE; Academic Press, London, New York 1970), p. 645.
- ⁵ C. C. Kratzing, in Biochemists' Handbook (Ed. C. Long; E. & F. N. Spon Ltd., London 1961), p. 805. ⁶ A. Niki, H. Niki, I. Miwa and J. Okuda, Science 186, 150 (1974).
- ⁷ I. Miwa, J. Okuda, H. Niki and A. Niki, J. Biochem. 78, 1109
- (1975).
- J. Okuda and I. Miwa, Analyt. Biochem. 43, 312 (1971).
- ⁹ J. Okuda and I. Miwa, in Methods of Biochemical Analysis, vol. 21 (Ed. D. Glick; John Wiley, New York 1973), p. 155.
- 10 W. WERNER, H. G. REY and H. WIELINGER, Z. analyt. Chem. 252, 224 (1970).
- ¹¹ I. Miwa and J. Okuda, J. Biochem. 75, 1177 (1974).

Influence of temperature on p-glucose uptake by the retina. The retinas were incubated in the media containing 750 $\mu \mathrm{g/ml}$ equilibrated D-glucose at 4°C (●) or 37°C (○). Preincubations of 5 min were performed at the respective temperatures. See the text for the detailed conditions.

26.8% respectively, as reported before. Although the mutarotase activity of 0.66 unit/g wet tissue was detected in the retina, the mutarotase in the retina was considered scarcely to affect the mutarotation rate of p-glucose in the media. Uptake of p-glucose by the retina during the incubation of 3 and 5 min was measured by determining the glucose contents in the media before and after the incubation.

Results. After 3 min incubation, 1.11 mg of α -D-glucose was incorporated in the retina per g wet tissue, while 1.32 mg of β -D-glucose was incorporated (table). The incorporated amount of the equilibrated D-glucose was between those of α and β anomers. The ratio β/α was calculated to be 1.19. This value was statistically significant (p < 0.05) according to the t-test. Considering the rapid mutarotation during incubation, the real ratio should be greater than this. After 5 min incubation, the incorporation clearly increased in every case. However, the ratio β/α became smaller than that after 3 min incubation. This decrease of the ratio will be attributable to the progress of equilibration.

Uptake of two anomers of p-glucose and equilibrated p-glucose by rat retina

Incubation time	α anomer	eta anomer	equilibrated	β/α
3 min	1.11±0.19	1.32±0.18	1.15±0.24	1.19*
5 min	1.88 ± 0.31	2.15 ± 0.22	1.99 ± 0.36	1.14b

Values are mean \pm S.D. of 9 experiments and are expressed as mg of n-glucose/g wet issue. *p<0.05; *binsignificant.

Discussion. In a preliminary experiment, we found that the glucose uptake by the retina is dependent on the temperature as shown in the figure, by incubating the retina at different temperatures (4 °C and 37 °C). Dollery et al. ¹² compared the assimilation of D-glucose-1-¹⁴C with that of L-glucose-1-¹⁴C in the retina of rat. They found that 5 min after an intravenous injection of the radioactive D- and L-glucose the ratio of D/L radioactivity in the retina was 23.7. Keen and Chlouverakis ¹³ reported that the D-glucose uptake by the rat retina showed the saturation for D-glucose concentration. These 3 data indicate the presence of a stereospecific carrier for D-glucose in the retina. From our result, it should be mentioned that the carrier for D-glucose in the retina prefers the β anomer of D-glucose stereospecifically.

The preference for β -D-glucose in D-glucose uptake by the retina was similar to those of rat pancreatic islets?, human red blood cells¹⁴, Ehrlich ascites tumor cells¹⁵. Therefore, it should be notified that any cells of higher animals generally utilize the β anomer of D-glucose more predominantly than the α anomer as an energy source.

On the other hand, it seems likely that the receptor site of D-glucose-recognizing cells accepts the α anomer of D-glucose preferentially, since it is known that the preference for α -D-glucose is found in triggering insulin secretion 6, suppressing glucagon secretion 16 and sensing the sweetness of D-glucose 2,17.

- ¹² C. T. DOLLERY, P. HENKIND and M. L. E. ORME, Diabetes 20, 519 (1974).
- 13 H. KEEN and C. CHLOUVERAKIS, Biochem. J. 94, 488 (1965).
- ¹⁴ R. G. Faust, J. Cell. Comp. Physiol. 56, 103 (1960).
- ¹⁵ P. H. FISHMAN and J. M. BAILEY, Am. J. Physiol. 226, 1007 (1974).
- ¹⁶ A. A. ROSSINI, J. S. SOELDNER, J. M. HIEBERT, G. C. WEIR and R. E. GLEASON, Diabetologia 10, 795 (1974).
- 17 Y. Tsuzuki, Kagaku (in Japanese) 17, 342 (1947).

N-(5'-Phosphopyridoxyl)-4-aminobutyric acid: A stable bisubstrate adduct inhibitor of rat brain 4-aminobutyric acid aminotransferase¹

G. Tunnicliff², T. T. Ngo and A. Barbeau

Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal (Quebec H2W. 1R7, Canada), 6 August 1976

Summary. N-(5'-Phosphopyridoxyl)-4-aminobutyric acid, a stable adduct of pyridoxal phosphate and 4-aminobutyric acid, has been shown to be a potent inhibitor of rat brain 4-aminobutyric acid aminotransferase (GABA-T) with a K_i of 1.4 μM .

Introduction. The growing acceptance of 4-aminobutyric acid (GABA) as an inhibitory neurotransmitter^{3,4} and the proposal that some anticonvulsant drugs exert their action by elevating brain GABA levels as a result of inhibition 4-aminobutyric acid aminotransferase (GABA-T)^{5,6} have given impetus to the search for potent GABA-T inhibitors in anticipation that these compounds will be potential antiepileptic drugs.

GABA-T belongs to a class of enzymes called transaminases. The mechanism of action of these enzymes is well studied 7-9. The catalytic activity of transaminases depends on the presence of pyridoxal phosphate. The enzyme-bound pyridoxal phosphate exists as the Schiff's base rather than as the free aldehyde. The initial step in the transaminase-catalyzed reaction is a transimination that involves the conversion of the pyridoxal phosphate-enzyme Schiff's base into a pyridoxal phosphate-amino acid Schiff's base:

$$N \longrightarrow C \longrightarrow H + H_2N - R$$

With the participation of the appropriate acidic and basic groups of the enzyme in a hydrolytic reaction, a pyridoxamine phosphate derivative of the enzyme and a keto acid are formed. On the basis of this reaction mechanism it was anticipated that N-(5'-phosphopyridoxyl)-amino acids would be good inhibitors of pyridoxal phosphate dependent enzymes 10 since these compounds structurally resemble the intermediates in the enzymatic reaction pathway.

Severin et al. ¹⁰ reported that N-(5'-phosphopyridoxyl)-4-aminobutyric acid at 1 mM concentration inhibited rat brain GABA-T by 30%. However, the mechanism of